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Analytical expressions for xeros of algebraic polynomials and of entire transcendental 

functions find many applications in solving some problems of mechanics (such as stability 

of fluid flows, breakup of fluid currents e.a.1. These expressions can be obtained by 

expanding the zeros of a given function into a power series in terms of its parameters. 

A considerable amount of literature dealing with this problem exists [l to 121, but in 

most instances either usable expressions are not derived, or they are derived only for some 

particular function. Lakhtin obtains in [1] ex p ressions for zeros of algebraic polynomials 

in terms of hypergeometric functions. In more recent work of Belardinelli [2] an exhaus- 

tive review of relevant investigations is given together with author’s own results which, 

unfortunately, again are not in a form which could easily be applied to functions of suffic- 

iently general type. 

In the present paper an attempt is made to obtain, by elementary means, expansions of 

zeros of entire functions (including algebraic polynomials of any degree) in a form suitable 

for practical application. Several examples from mechanics and numerical methods show 

practical application of the obtained series. 

1. Let 

f (2) = PO + P,U + P2U2 + **** (1.1) 
where a = z - 5 is an entire function of I, expanded in a series at the point g lying near 

one of the zeros of f(z). By the definition of entire function, series (1.1) converges for any 

finite z and [. 

We know (Hurwitz [13] ) that if ft(z), fi(f), . . . is a sequence of functions analytic in 

some region D bounded by a simple closed contour, if j,(z) + f(z) uniformly fn D and 

f(r) f 0, then the point z. lying within D is a zero of f(z) if and only if it is a limit point 

of a set of zeros of the function f,(z). 

Therefore, if f(z) is an entire function and the series (1.1) representing it converges 

at any finite point of a plane, then the sequences of zeros of partial stuns of the expsnsfon 

(1.1) converge to the zeros of f(z). 

We shall represent a zero of f(z) by an expansion 

u = a, + U$o +-a&JIpt + . . . 

in powers of po. Let us introduce the notation 

U’ = (a0 + alp0 + %Poa + **Y = 50 + c,lpo 

Here [ 141 

c so = Q, m’n, i (si + i - m) aiTsm_, c,, = - 
i=l 

(1.2) 

+ C&o” + . . . (1.3) 

for m), 1 (1.4) 
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It can easily be shown that 

Grn 
*yf+“j+-+=k) /f/j . . . 

&1.5) 

Summation ia performed-hek over’all possible partitions of m into equal or unequal 

natural component6 

iai + jaj + . . . + ka, = m (1.6) 

Inserting (1.2) into (1.1) and taking (1.3) into account, we obtain 

j$‘k &.‘pQf = ’ (1.7) 

Equating to zero the coefficients of consecutive powers of p,, in (1.7), we obtain a 

eyetern of equation6 for the coefficients ok 

g pkao” = 0, 1 + 2 p,&l = o (1.8) 
6 =l h=O 

&$kl = 0 (t = 2, 3, . . .) (1.9) 
L=l 

First Eq. of (1.8) hae one zero root a,, = 0. Let ue find the coefficient8 of (1.2) correa- 

ponding to thin root. When u. = 0, Formula (1.5) becomea 

cl,; 
= 2 t! 

al! aa! . . a,! 
&za =s. . . apCP (1.10) 

l~aI+2ar+3a3+...+pa,=k, al+aa+a3+...+ap=t 

co, k” = 0, Ct, k” = 0 when t>k (1.11) 

Taking into account (1.10) for a0 = 0 we obtain, in place of (1.8) and (1.9), 

a0 = 0, 1 + Plh = 0 PIas + i Pkck. so = o (s = 2, 3, . . .) (1.12) 
k-2 

defining the coefficiente of (1.2). 

Defining the coefficients ok from (1.12) we obtain 

a0 = 0, al = -$ ak = A,p,a’P,a”. . . PQaq (k = 2, 3, . . .) (1.13) 

where 

A k= - 
(2k - 2)! 

a,! a,!...~,! kl 
when r+1 

(1.14) 

Summation in (1.13) is performed over all pdssible partitiona of a natural number 

2 (k- 1) = ra, + sa, + . . . + qa, (1.15) 

into equal or unequal natural components, under the condition that 

a,+a,+...+a,=k--l (1.16) 

A eerie0 resembling (1.2) with coefficienta (1.13), wae obtained by Heegman [8] 

(quoted by Bazhenov in [s] ) f or a real root of an algebraic equation. Putting 

Pk 
-=qk? qO+Z=q 
Pl 

(1.17) 

and inserting it into (1.2) we obtain, after some transformations, 
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+ 2 (_I)=‘+1 q”m+lla’qsat . . qpap $j a (1.18) 
f=So 

where summation in the second term is performed over all partitions of consecutive, even 

natural numbers 2m, beginning with the number 4, into m possible natural components 

except 2 

2m = al + sa, + . . . + pa,, al + a, + . . . + an = m (1.19) 

Let us denote the internal aums of (1.18) by 

wi, n(q) = I: O” (2t + 2k)! rlt 
fro t! (t + n)! ’ m+1, n P-l> = Iis 

O” (Fit+ 2k-l i)! ,.,t 

tlo t! (t + n)! 
(1.20) 

and use them to expand (1.18) into a usable formula, This formula is 

u= - QOdOl + Qo3Q363,3 - 40%4644 -~q!15q32hJ + qo5q5%5 + 

+ qOsq3q4a76 -qr,6qtJQetJ + ;qn7qs3a97 -* * * (1.21) 

2. Series (1.20 can be expressed in terms of hypergeometric functions. We can ea8ily 

see that (2.1) 

Gk. n (7) = 

62h+l. n (q) = =$b’(k+l, k+ +; n+l; 41) (2.2) 

where F is a Gauss’ hypergeometric function. Hypergeometric series become truncated 

at any values of k and n which may be encountered in the internal sums of (1.18), and can 

then be expressed in terms of algebraic functions. 

Using transformation formulas given in ([14], p. 1057), we obtain 

WY 
QZh, n(rl) = yj- 

-i 

I’(n+i)I’(n-2k--/a) x 

I’(n-k)l’(n - k + ‘/a) (4q)“+’ 

xF(k+l, k- n + 1; 2k- n + 3/a; ‘+)+ 

+ I’ (n + 1) I’ (2k - n + ‘/a) (1 - 4q)n-2’-“r 

r tk + 4) r (k +‘/a) (4tl)n 
F(-k, -k+;;n-2k 

(2.3) 

+ +; I- 4?)} 

r(ft+i)r(n--2k-*a/,) 

Q- 
(2.4) 

xJ’(k+l, k- nfl; 2k--n+;; ‘q)+ 

r (n + I) r (2k - n + S/r) (1 - 4q)u-*k-a” 

r (k + 1) r (k + */a) (4tP 
F(-k, -k-;;n-2k-+; I-4q)} 

where r(x) is a gamma function and all hypergeometric functions are expressed in a 

finite form. Finite expressions for series CJ k, . appearing in the first terms of the expan- 
sion (1.21) calculated by means of (2.3) and (2.4), are 
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Co; = 
18 __3rl”-3RMt 

{ 

Zi(lR~ - 420115 f 25218 - 6OR + 5 

‘1’ ! 6rl’ (I- 4tj~p (2.5) 

Since au algebraic polynomial is a particular case of an entire function, the above 

expansions can be used for determination of the roots of algebraic equations. 

Limiting ourselves to the term of (1.1) containing urn r we shall consider an m-th order 

Eq. 

f (4 = k$Pkuk = 0 (2.6) 

On substitution 

!?a% = @21 -qdqfl = @&?I -**, (--j)& qo”$ = or&, . . . . u = - qoc (2.7) 
Pq. (2.6) becomes 

f (5) = 2 - 5 + w&” + o&3 + *.. -j- 0,5” = 0 (2.81 
It is now easy to obtain, from (1.181, the following expression for a root of (2.8) with 

the smallest modulus 

.I. 

In particular, for a Snd, 3-rd, 4th and 5th degree Eqs., we obtain 

5 = 501 (02) for m = 2, 5 = 5 $5a*, !&?+a @a) for m==3 

8==0 

r = 5 !$ 5 $ i $ htw5k. 25+3r+4k+l @z) 
for m = 5 

1. GO r=0 . s=o 

In practice, small number of terms in Formulas (2.9) and (2.10) can be used, provided 

that the root is expanded at a point which is sufficiently close to it. This makes it possi- 

ble to utilize the sxpausion (1.21) and Expressions (2.5). 

3. We shall now determine the radii of convergence for internal sums crk,. in (1.18), 

(1.21), (2.9) and (2.10) when the values of all indices except tbc indices of internal sums, 

are fixed. We can write any of these sums as 

(3.1) 

where, by our assumption, k and s are constants. Radius of convergence of (3.1) can be 

found using a well known formula 
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1 (2t I-- 2 + /i)! t! (t + s)! 

- = ,1E (t + I)! (1 + 1 -i- s)! (2t --t /i)! P 

This yields the value p = l/4, hence the sums listed above converge, if (provided 

also that (1.17) and (2.7) are taken into account) 

(3.2) 

holds. 

Let us find the region of convergence for the considered sum, on the t-plane. 

Using (1.1) we can write the inequality (3.2) as 

Now let us put 

2 (m-l) 

2f(E)f”(E) = 2 
h-0 

(3.3) 

(3.4) 

where m is the degee of a polynomial f(z). 

Using (3.4) we can obtain from (3.3) an equation of regions of convergence of internal 

sums in expressions for roots of an algebraic Eq. 

F(R, 0) = $ + a(&pd3 = 0 

a (m-1)-k 

k=l 

(dk = 2 2 Dl,s+kRaa+k ) (3.5) 

s-0 

Dij = 
4 4 I I Aj Bi 

It can be assumed that the series (2.9) converges when the polynomial (1.1) is 

expanded at the point [ lying within a region of convergence (3.5). 

4. Expansion (2.9) of a root of an algebraic m-th degree equation obtained previously 

is of sufficiently general form(*), and can be used to oktain exact solutions of equations 

soluble in radicals or in terms of some special functions in cases when summation of the 

obtained series is feasible. We shall now consider some examples. 

a) For m = 2 

f (2) = 22 + pz + Q = 0 (4.1) 
By (2.10) and (2.5) we have 

p=bo,1(02)= i - J$“” (4.2) 

where 

c=-_(PIQ)Z, rl=qIp27 Or z=--‘/zP$ Vqz=-Y~ 
b) For m = 3 

f (z) - 28 + pz + q = 0 
By (2.10) and (1.20) we have 

(4.3) 

(4.4) 

where 

+$z, oa=o, w8=-g 

+) Equation which does not include the unknown in the first power (PI = 01, l hoald be. 
transformed using a displacement transformation, before (2.9) can be applied. 
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Substitution of (4.6) into (4.5) yields 

Since 

Using a tranaformatios formula (given in [14], p. 1057, Formula 3.131~1) we obtain 

ZZZ-_ $- (@ -f- I)--“‘F ($ , ; ; ; ; _2___) . t= +1 

(4.7) 

(4.8) 

(4.9) 

Applying to it the summation formula igiven in [14], p. 1054, Formnla 9.121.4) we have 

for n - lf3r 

Z=-- $[1 i_(P + l)L$L- [--t +(ta + #P]““) (4.10) 

which on substitution of t from (4.8) into it, becomes the well known Cardan’s formula 

e) Expansion of a root of 
p+Zy--~=-_ 

is of interest, Applying (2.9) we obtain 

(4.13) 

A necessary and sufficient condition for (4.13) or (4.14) to converge, is 

(4.15) 

We know that (4.121 has an expansion due to Meliin 123 

y=f 
co 

22 
t- fWl(f -t al/n) 

a=0 
r(a+l)r(l~+[i-(n--I)a]/r~)~a t4.16) 

its condition of convergence being 

We see that (4.13) supplements the expansion obtained by Mellin and enables us to 

obtain a solution at any value of parameter n. 

5. Several examples of application of obtained results to some problems of mechanics 

and numerical methods, follow. 

a) In fl5l 8 characteristic Eq. 

H9 + $52 HZ t p,H -I- PO = 0 
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A = I,$ (I- ewm), M = @, D _ Mwm3, w = p&Fe 

PI Q 
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(5.11 

was obtained, where m is a dimensionless wave number, M is the ration of densities of the 

fluids and W is the Weber number (pz is the density, h is the thickness of the boundary 

layer, V ia velocity and o is surface tension coefficient). We shall try to determine the 

dependence of the oscillatory increment i.e. of the imaginary part of a complex root of (5.11, 

on the wave number for various values of the Weber number W, 

In [15] a graphical solution was obtained. From (5.11, we have 

z.3 + brz + b, = 0, Ii= Z-V& (5.21 

and 
bi = 3P1- P2 b. =5Pr3 - 9plpa .-i_ 27po 

3 ’ 27 
(5.31 

Also, Im&) = Im(zl. It can easily be shown that the second and third root of (5.2) can be 

expressed in terms of the first (real) root, by 

za,a = - I/! .x1 F r/2 i f-5 (5.41 

Zi = l/x 1/32i’ + 4bl (5.51 

To determine t 
transformed into ( b’ 

we can apply one of the Formulas (4.13) or (4,161. Eqs. (5.2) can be 
.12) by means of a substitution 

z = y (&Jlz’~ (5.6) 

Subsequent calculation confirmed the results obtsined in flS]. We see that the snalyti- 

cal method of solution utilised by us makes it possible to achieve any predetermined 

degree of accuracy. 

b) In [16] a problem of the breakup of a current of viscous fluid. Characteristic equation 

has the form 

~2+~~[2~~~~) --- 2kl 11 (kc) I,~(zat a _ ck (I 
ke + 24’ II (la) 1 

11 (kn) Is- k$ 

Pa” 
- kW) _ - 

IO (ka) 1% + ka 

(12 = k’J + a/v) (5.7) 

where u denotes radius of the current, ko is a dimensionless wave number, p is the 

density of the fluid, cr is surface tension coefficient, v is kinematic viscosity, and Q is 

the complex frequency of oscillations while Io&a) and ii&o) are Bessel functions of an 
imaginary argument. Author of [16] states that the equation is too complicated to be 

solved by analytical methods and only considers the limiting cases. 

Let us introduce dimensionless paremeters 

m= ka, z = a a% 
( i 

‘it 
-ii- ’ 

into (5.7). Then, 

and Eq. (5.71 assumes the form 

2ma.z 

z2 
C 

2m jfmz 4 AZ 
2m2 + Al 

3 
= 

(5.81 

(5.9) 

AZ 11 (m) 
= m (’ - m2) 2mZ + AZ ZO (m) (5.10) 

Expanding Bessel functions and their derivatives into series in zeros of their arguments 

we obtain from (S,lOf, after some traMformations, 

i M,c’ = 0 (5.111 
t=o 

where 
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6 = mz + .4z, 1czo = m4Zo (m) - 6m3Z1 (m) - m (1 - m?) II (m) 1” 

10 (ml 

M1 = m2 (16 - 3m?) IO (m) - 2m (8 + 7m*) II (m) -m (1 -- ~12) II (m) A2 

810 (ml 

M 
I 

= [16(r-l)r(r+l)+8t(~ +l)m2+m4]Z~(m)-[88t(t-+ l)b+2(3+4t)tn3] It(m) _ 

22’t! (t + I)! lo (m) 

m(l-m2)ZI(m).~2 
- 

22’1! (t + l)! lo(m) 
for (t = 2, 3, . .) 

Let us find the oscillation increment for the case of flow of a current of a 75% aqueous 

solution of glycerine. In this case we have A 2 = tp = 33.5. Fig. 1 shows the result of 

our computation. Broken curve is obtained from 

2 = - ‘$ + (2 + + m2 (1 - m2):j”’ (5.12) 

which results from the substitution of dimensionless parameters (5.8) into a simplified 

equation given in [la]. Fig. 1 also shows the position of maximum increment for the case 

when the current is composed of ideal fluid (Rayleigh). We see that the curves differ from 

Fig. 1. Fig. 2. 

each other. Values of oscillation increments obtained by means of a more exact solution 

of characteristic equation are, roughly, one-and-half times as large as those obtained by 

means of (5.12) quoted in 1161. This, of course, gives much better idea of the length of the 

unbroken part of the considered current. 

c) Consider the equation of dissection of a circle 

f (2) = z5 - a = 0 (5.13) 

Region of convergence of internal sums in (1.21) is, by (3.5), defined by Eq. 

F (R, 9) = - (64a2 + 39 R 10) -/- 128aR5 c& 56 = 0 (5.14) 

Fig. 2 shows regions of convergence of series for each of five roots of (5.13) for (I = 2. 

Let us compute the real root of the equation, expanding f(z) at the point 5 = 1.2 lying 

inside the region of convergence of the real root. Then, in place of (5.13). we obtain 

q5 + 6q4 _t 14.4q3 + 17.28112 + 10.368q + 0.48832 = 0 (5.15) 

where 

q = z-l.2 (5.16) 

We shall use the first two terms of (1.21). on assumption that the remaining terms are 

small enough to be neglected. We obtain 
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and finally 

q(J = 0.047099, qz E 1.66667, q:$ = 1.38889, 

u’~ = qoqz = 0.0784976, cro, I = 1.093897, us, 3 = 1.56252 

11 = - 0.05130andc = 1.14856 (5.17) 
with high degree of accuracy. This can easily be checked, as the real root of (5.13) for 

o = 2, is z = 20.2 = 1.148698 (see e.g. [17] ). 

d) Let us find the smallest root of the equation 1181 

f (z) = zi- & 9 -:- (5.18) 
.! 

Its roots can be located using any of the numerous existing methods. Graph of f(z) 

lo-’ f 
baaed on approximate computations shown on Fig. 3, permits us to choose 

a point sufficiently near to the required root. Taking 

2 

I4Y 

u = L - 0.02 (5.19) 

0.1 0.2 .3 we obtain the coefficients of a transformed equation 

qa = - 0.00494670, qz = - 17.42303 

-Ii’ q3 = 109.73202, 11 = q,qz = 0.0861865 

Fig. 3. Using again only the first two terms of (1.21) we 

obtain 

a c o.c(‘r44’4 or L = 0.0254454 ‘C C. 
while [18] gives its value as z = 0.02544604. 

e) Let us find a real zero of the function 

f(z) = cos scoehz - 1 = 0 

Approximate values of zeros of f(z) are given by [19] 

(5.20) 

(5.21) 

a n = t/a (Zn + 1) 3t (5.22) 
where n denotes the n-th zero, when the trivial value z = 0 is disregarded. 

Expansion of f(z) at the point z = 0 has the form 

XSS 
f (X) = 5 (4’ $5 (Zs)! ---1:-o 

(5.23) 
k-3 s=a 

which, on application of a formula ([14], p. 29, Formula 0.316) for multiplication of power 

series, becomes 

f (6)= $j czk6k = 6 (cza =2$$ (2f)f((;;Jl)‘tl), + && (5.24) 
h=l t=n 

or ([14], p. 18, Fonnol~ 0.153.1 and 0.153.3) 

B 2zs 
cz,=(--1) (4s)I’ b=ti (5.25) 

Let uz dirregzrd the trivial zolotion 5 = 0. To compute the zero x, S we zhall expand 

the fnzction f(c) into a zeriem 

f (b) = 5 ‘2 (k+& = 2 PI,)Ik, q={--iZ*4 W26) 
k=o h=o 

obtaining 

Ps = g f(‘) (an”) = f i k (k - 1) . . . (k - s + 1) cz o,+1)an4 (‘-‘) (5.n) 

k=S 
To obtain the fimt zero x 1, we zhall again nze fimt two termz of (1.21). The coeffi- 

cientz now will be 
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Q,, = - 7.40712, qz = - 4.2416 ‘10-4, q3 = 4.16592 *IO-a, 

rl = 3.1418 ‘10-3, uu,i = l.Ou3162, c~a,a = 1.0158, 

and they yield the value of 7 = z4 - at4 = 7.43052. 

Substituting into it the value of at calculated according to (5.22). we obtain the first 

zero of (5.21) as rt = 4.73004, while [I91 quotes x1 = 4.73. 

f) We shall find a real zero of the function 

1 (z) := J* (:! v’;, = 0 (5.28) 

This problem was solved by Eufer who expanded the zero into an infinite product; it is 

quoted in f2Of. 

L.et us use (3.3) to construct the regions of convergence for the expansion of (5.28). 

Fig. 4 shows the regions of convergence of series for the first three zeros of (5.28). A 

F 
straight line parallel to the abscissa with the 

ordinate equal to ?/, gives regions of convergence 
0.50 for three given zeros on the real axis. Function 

a.25 
(5.28) can be expanded into a series at a zero, 

as follows 
m 

i? IO 20 j(z)= 2 (--1)” & -0 (5.29) 

Fig. 4. 1, z-0 

Let us expand f(t)at the point t = 1.4 lying 

within the region of convergence (Fig. 4). We obtain 

q,, = - 0.045085370, qz = - 0.34104094, q3 = 0.043352828, 

i = QoQx = O.O1537395i, 

which yields, for the first zero of (5.28), the value of a t = 1.4457964. In [20] it is given 

as Q t = 1.445796. 
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